Lecture 34. Reflections and projections vio wmatrices

Del A set of wnonzero vectors VT,V;,'“,VW\G\R” is orthonormal if it

consists of orﬂ\oaoml unit vectors.

Pmp Let VV be o subspace of R Jrogeﬂ(\er with an orthonormal basis

@Z %V)l ,Vy_, "',Vm(l.

(1) The orﬂ\ogoml orojection of XelR onto V is

=QQ'%
where Q is the moatrix with columns Vi, Vo, ", V.
(2) The reflection of XelR Jr\/\roug\m VAR
¥=02QQ"™-1)%X
P;Q (1) QT \/\QS rows v)t,v;_,”',v)m,
C
T— Ca . —_ = Yv». - — |2 2
= QxX=] with Ci:X'\/'l:v»__v_ (v-v=lvl=r=1)
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:> Q TY: Q(QTY) - C\VT +CLV?_++CW\7W\

=X
) X=2(X-X)+X=2%-% [cf. the last example in Lecture 32)

= ¥=20Q'x-X=(20Q"-1)x%
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E}_ Find the stondard watrix of each ltnear transtormodtion .

1y T IR — R which reflects each vector Jr\/\roug\/\ the line y=2x
Sol The line y=2x is sponned by 72[;}'

= m:%[;} gives an orthonormal basis of the line y=2X

<

= T.(X)=2QQ"-1)X where Q is the matrix with column “

<l

Hence the stondard wotrix is

oor-t= 23t (s 41 e a3

) T,: R — R which projects each vector orthogonally onto the line

2
V=1,
|
Sol The line hos an orthonormal basis given by
— 2
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= T(X)=QQ'X where Q is the moatrix with column m

spanned by

Hence the stondard wmatvix is
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3) Ta: IR — R which projects each vector orﬂ\ogom“g onto the plane

A]-<{]

Sol Vi ond Vo are linearly independent.

SPO\V\V\QQX b&j

= Vi and Vo form a basis of the plane

The Grom—Schmidt process yields
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= T(X)=QQ'X where Q is the watrix with columns ol Tl
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Hence the stondard matrix is
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4) Ta: IR — R which reflects each vector througn the plane x+y+z=0
Sol We moy write the plane equation as x=-y-z.

With y=s and 2=t as free variables, we find

1

= The plone hos o basis given by

sl

The Gram—Schmidt process yields

= The plane has an orthonormal basis given by
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Hence the stondard matrix is
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Note We can get the same answer using the orthogonal complement

of the plane, which is the line L spanned by

Al

The line L has an orthonormal basis given by

v _,
MY

= The orﬂ(\oaoml projection of XelR onto L is

e

T=QQ'XY where Q is the wotrix with column

For the reflection X =T(X) of X Hhrough the olane , we find




